Cookie preferences
This website uses cookies, which are necessary for the technical operation of the website and are always set. Other cookies, which increase the comfort when using this website, are used for direct advertising or to facilitate interaction with other websites and social networks, are only set with your consent.
Configuration
Technically required
These cookies are necessary for the basic functions of the shop.
"Allow all cookies" cookie
"Decline all cookies" cookie
CSRF token
Cookie preferences
Currency change
Customer recognition
Customer-specific caching
Individual prices
Selected shop
Session
Comfort functions
These cookies are used to make the shopping experience even more appealing, for example for the recognition of the visitor.
Note
Statistics & Tracking
Affiliate program
Track device being used
MCP4725 Breakout Board
- Manufacturer: Adafruit
- Order number: EXP-R15-073
- Manufacturer part number: 935
- country of origin: US
- HS code: 85423990
- Weight (kg): 0.002
Your microcontroller probably has an ADC (analog -> digital converter) but does it have a DAC... more
Your microcontroller probably has an ADC (analog -> digital converter) but does it have a DAC (digital -> analog converter)??? Now it can! This breakout board features the easy-to-use MCP4725 12-bit DAC. Control it via I2C and send it the value you want it to output, and the VOUT pin will have it. Great for audio / analog projects, such as when you can't use PWM but need a sine wave or adjustable bias point.
We break out the ADDR pin so you can connect two of these DACs on one I2C bus, just tie the ADDR pin of one high to keep it from conflicting. Also included is a 6-pin header, for use in a breadboard. Works with both 3.3V or 5V logic.
Some nice extras with this chip: for chips that have 3.4Mbps Fast Mode I2C (Arduino's don't) you can update the Vout at ~200 KHz. There's an EEPROM so if you write the output voltage, you can 'store it' so if the device is power cycled it will restore that voltage. The output voltage is rail-to-rail and proportional to the power pin so if you run it from 3.3V, the output range is 0-3.3V. If you run it from 5V the output range is 0-5V.
We have an easy-to-use Arduino library and tutorial with a triangle-wave and sine-wave output example that can be used with any 'duino or ported to any microcontroller with I2C host. Wiring it up is easy - connect VDD to your microcontroller power pin (3-5V), GND to ground, SDA to I2C Data (on the Arduino Uno, this is A4 on the Mega it is 20 and on the Leonardo digital 2), SCL to I2C Clock(on the Arduino Uno, this is A5 on the Mega it is 21 and on the Leonardo digital 3) and listen on VOUT.
Documents:
Viewed